26 research outputs found

    Detection of Orientia sp. DNA in rodents from Asia, West Africa and Europe

    Get PDF
    Article Open AccessInternational audienceOrientia bacterium is the agent of the scrub typhus, a seriously neglected life-threatening disease in Asia. Here, we report the detection of DNA of Orientia in rodents from Europe and Africa. These findings have important implications for public health. Surveillance outside Asia, where the disease is not expected by sanitary services, needs to be improved

    Rodents of Senegal and their role as intermediate hosts of Hydatigera spp. (Cestoda: Taeniidae)

    Get PDF
    Hydatigera (Cestoda: Taeniidae) is a recently resurrected genus including species seldom investigated in sub-Saharan Africa. We surveyed wild small mammal populations in the areas of Richard Toll and Lake Guiers, Senegal, with the objective to evaluate their potential role as intermediate hosts of larval taeniid stages (i.e. metacestodes). Based on genetic sequences of a segment of the mitochondrial DNA gene cytochrome c oxidase subunit 1 (COI), we identified Hydatigera parva metacestodes in 19 out of 172 (11.0%) Hubert's multimammate mice (Mastomys huberti) and one out of six (16.7%) gerbils (Taterillus sp.) and Hydatigera taeniaeformis sensu stricto metacestodes in one out of 215 (0.5%) Nile rats (Arvicanthis niloticus). This study reports epidemiological and molecular information on H. parva and H. taeniaeformis in West African rodents, further supporting the phylogeographic hypothesis on the African origin of H. parva. Our findings may indicate significant trophic interactions contributing to the local transmission of Hydatigera spp. and other parasites with similar life-cycle mechanisms. We therefore propose that further field investigations of rodent population dynamics and rodent-borne infectious organisms are necessary to improve our understanding of host–parasite associations driving the transmission risks of rodent parasites in West Africa

    Parasites and invasions: changes in gastrointestinal helminth assemblages in invasive and native rodents in Senegal

    Get PDF
    Understanding why some exotic species become widespread and abundant in their colonised range is a fundamental issue that still needs to be addressed. Among many hypotheses, newly established host populations may benefit from a parasite loss ("enemy release" hypothesis) through impoverishment of their original parasite communities or reduced infection levels. Moreover, the fitness of competing native hosts may be negatively affected by the acquisition of exotic taxa from invaders ("parasite spillover") and/or by an increased transmission risk of native parasites due to their amplification by invaders ("parasite spillback"). We focused on gastrointestinal helminth communities to determine whether these predictions could explain the ongoing invasion success of the commensal house mouse (Mus musculus domesticus) and black rat (Rattus rattus), as well as the associated decrease in native Mastomys spp., in Senegal. For both invasive species, our results were consistent with the predictions of the enemy release hypothesis. A decrease in overall gastrointestinal helminth prevalence and infracommunity species richness was observed along the invasion gradients as well as lower specific prevalence/abundance (Aspiculuris tetraptera in Mus musculus domesticus, Hymenolepis diminuta in Rattus rattus) on the invasion fronts. Conversely, we did not find strong evidence of GIH spillover or spillback in invasion fronts, where native and invasive rodents co-occurred. Further experimental research is needed to determine whether and how the loss of gastrointestinal helminths and reduced infection levels along invasion routes may result in any advantageous effects on invader fitness and competitive advantage

    Impacts of climatic changes on small mammal communities in the Sahel (West Africa) as evidenced by owl pellet analysis

    No full text
    To evaluate the impact of climatic change on rodent sahelian communities, we  analysed the contents of over 2500 barn owl (Tyto alba) pellets collected along the Senegal river between 1989 and 2003, and from the Ferlo sahelian area in 2003. These results are compared with data from the 1970s and 1980s in the same zones. Rodents were the most common prey (over 90%). Gerbillinae were most common in dry areas (84 to 96%) whereas in wetlands and rice fields murines were most common (77 to 88%). Nowadays, the genus Gerbillus constitutes the main prey in dry areas (77% to 88%). The genus Taterillus, which was the most abundant rodent in the Ferlo in the 1970s, now represents only 7% of rodents. Gerbils were not present in Senegal before the 1980s: G. tarabuli and G. henleyi were trapped for the first time in 1989 at the northern border of Senegal, and G. nigeriae 10 years later at the same place. The latter is now present a hundred kilometres southwards and as abundant in owl pellets as the two other gerbils.Key words: climatic change, Sahel, rodents, owl pellets, Gerbillus

    Population genetic structure of two ecologically distinct multimammate rats : the commensal Mastomys natalensis and the wild Mastomys erythroleucus in southeastern Senegal

    No full text
    Using the same set of microsatellite markers, we compared the population genetic structure of two Mastomys species, one being exclusively commensal in southeastern Senegal, and the other being continuously distributed outside villages in this region. Both species were sampled in the same landscape context and at the same spatial scale. According to the expectations based on the degree of habitat patchiness (which is higher for commensal populations in this rural area), genetic diversity was lower and genetic differentiation was higher in commensal populations of Mastomys natalensis than in wild populations of Mastomys erythroleucus. Contrasting estimates of effective dispersal and current migration rates corroborates previous data on differences in social structure between the two species. Isolation-by-distance analyses showed that human-mediated dispersal is not a major factor explaining the pattern of genetic differentiation for M. natalensis, and that gene flow is high and random between M. erythroleucus populations at the spatial scale considered

    Seoul Orthohantavirus in Wild Black Rats, Senegal, 2012–2013

    No full text
    International audienceHantaviruses (family Hantaviridae, genus Ortho-hantavirus) are RNA viruses transmitted by aero-solized excreta from infected rodents and shrews. In humans, they cause hemorrhagic fever with renal syndrome (more often observed in Asia and Europe) and cardiopulmonary syndrome (more common in the Americas) (1). Only 1 case has been confirmed in Africa, in the Central African Republic in 1987 (2). However, studies from 2006 through 2013 have discovered new hantaviruses in autochthonous African rodents, moles, and bats (3,4). In addition, serologic evidence in humans and rodents in Africa suggest local circulation (5). For example, a study in rural areas of Senegal found 11.5% of rodents and 16.6% of humans had antibodies against hantaviruses (3). More recently, serologic evidence of hantaviruses was reported in domestic and peridomestic rodents from some regions in Senegal (6). Southeastern Senegal has become a major trade area because of urbanization and substantial improvement of its road and rail networks in the late 1990s (7). Within a few years, these changes led to the rapid spread of a major invasive rodent species, the black rat (Rattus rattus [family Murinae]), which is a reservoir for Seoul orthohantavirus (SEOV) (4,5,7). To assess the prevalence of hantaviruses in rodents, we screened for hantaviruses in R. rattus rats and commensal or peridomestic co-existing rodents in 2012–2013, approximately 15 years after the 1998 opening of a tarred road in eastern Senegal

    Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal.

    No full text
    Bioinvasion is a major public health issue because it can lead to the introduction of pathogens in new areas and favours the emergence of zoonotic diseases. Rodents are prominent invasive species, and act as reservoirs in many zoonotic infectious diseases. The aim of this study was to determine the link between the distribution and spread of two parasite taxa (Leishmania spp. and Trypanosoma lewisi) and the progressive invasion of Senegal by two commensal rodent species (the house mouse Mus musculus domesticus and the black rat Rattus rattus). M. m. domesticus and R. rattus have invaded the northern part and the central/southern part of the country, respectively. Native and invasive rodents were caught in villages and cities along the invasion gradients of both invaders, from coastal localities towards the interior of the land. Molecular diagnosis of the two trypanosomatid infections was performed using spleen specimens. In the north, neither M. m. domesticus nor the native species were carriers of these parasites. Conversely, in the south, 17.5% of R. rattus were infected by L. major and 27.8% by T. lewisi, while very few commensal native rodents were carriers. Prevalence pattern along invasion gradients, together with the knowledge on the geographical distribution of the parasites, suggested that the presence of the two parasites in R. rattus in Senegal is of different origins. Indeed, the invader R. rattus could have been locally infected by the native parasite L. major. Conversely, it could have introduced the exotic parasite T. lewisi in Senegal, the latter appearing to be poorly transmitted to native rodents. Altogether, these data show that R. rattus is a carrier of both parasites and could be responsible for the emergence of new foci of cutaneous leishmaniasis, or for the transmission of atypical human trypanosomiasis in Senegal

    Individual and immune variables of rodents from the black rat invasion route.

    No full text
    This file contains all the individual (sex, body mass, age class), methodological (plate factor, initial hemolysis of the serum) and immune (HA, HL, Hp) variables considered in the statistical analyses carried out on rodents from the black rat invasion route

    Parasites and invasions: changes in gastrointestinal helminth assemblages in invasive and native rodents in Senegal

    No full text
    International audienceUnderstanding why some exotic species become widespread and abundant in their colonised range is a fundamental issue that still needs to be addressed. Among many hypotheses, newly established host populations may benefit from a parasite loss (''enemy release " hypothesis) through impoverishment of their original parasite communities or reduced infection levels. Moreover, the fitness of competing native hosts may be negatively affected by the acquisition of exotic taxa from invaders (''parasite spillover ") and/or by an increased transmission risk of native parasites due to their amplification by invaders (''parasite spill-back "). We focused on gastrointestinal helminth communities to determine whether these predictions could explain the ongoing invasion success of the commensal house mouse (Mus musculus domesticus) and black rat (Rattus rattus), as well as the associated decrease in native Mastomys spp., in Senegal. For both invasive species, our results were consistent with the predictions of the enemy release hypothesis. A decrease in overall gastrointestinal helminth prevalence and infracommunity species richness was observed along the invasion gradients as well as lower specific prevalence/abundance (Aspiculuris tetra-ptera in Mus musculus domesticus, Hymenolepis diminuta in Rattus rattus) on the invasion fronts. Conversely, we did not find strong evidence of GIH spillover or spillback in invasion fronts, where native and invasive rodents co-occurred. Further experimental research is needed to determine whether and how the loss of gastrointestinal helminths and reduced infection levels along invasion routes may result in any advantageous effects on invader fitness and competitive advantage.
    corecore